PAR measurements in the aquarium - The strength of the JBL LED SOLAR

How much photosynthetically active radiation (=PAR) really reaches the aquarium plants?

Aquarium fans (fortunately!) know it’s better not to have colourful aquarium lighting and that bright lighting has little in common with lighting quality (e.g. fluorescent tubes in living rooms). During their evolution plants have adapted to the spectral components of sunlight and now use a range between 380 and 780 nm (blue to red) for photosynthesis. These are the wavelengths that chlorophyll and other pigments use to supply the plant with energy.

It’s very important to JBL that the JBL LED SOLAR lamps generate high PAR values to make your aquarium plants grow well. But what happens to the PAR value at increasing water depths? No one has ever measured how the PAR value changes under water and how it behaves at different colour temperatures.

To find out, the 1 m deep Koi aquarium at the JBL Research Centre was turned into a diving tank. Biologist Heiko Blessin brought along his diving suit and diving equipment to measure the lamps under water using a PAR meter. The PAR meter was placed in a waterproof mobile phone case and the sensor head was slowly moved back and forth in the direction of the light at different depths. Elena Hänle, JBL’s chemistry expert, noted the highest PAR value displayed at each depth on the outer pane.

The values were measured directly above the surface (5 cm distance to the JBL LED SOLAR NATUR ) and directly below the surface, then at distances of 10 cm, until they reached the bottom of the tank.

The tables show the exact values measured, with the reducing value caused by the mobile phone cover corrected. The illuminance in lux was always simultaneously measured with a luxmeter, so the lux values are also entered in the table.

Good news for the aquarium plants is that we were still able to measure 131 PAR (at 2700 K), 122 PAR (at 4000 K) and 150 PAR (at 6700 K) in 40 cm water depths! These are really excellent values, translating into extraordinary plant growth to please all aquarium owners!

The lux value was also measured, as it is a good index for the illuminance. The lumen number is irrelevant, because it can be increased at will, e.g. by amplifying the green part of the spectrum, without being beneficial to the photosynthesis of the plants. Only with the combination of the full spectrum and the high PAR value can we see how well lighting can promote plant growth!

Kelvin describes the light colour or colour temperature of light and is abbreviated with K. It is perceived by the human eye as yellowish-warm or bluish-cool.

The measurement

Tested LED: JBL LED SOLAR NATUR 68 W

Distance LED to water surface: 4-5 cm

Measurement: Below the centre of the LED. Measuring depth related to the distance to the water surface. At 80 cm water depth no value could be recorded due to the size of the PAR meter.

2700 K

Measuring point Measuring depth [cm] PAR [μmol/m2s] Illuminance [lx]
Above the water surface 0 817.8 31.2
Below the water surface 0 788.8 26
Below the water surface 10 345.68 13.2
Below the water surface 20 225.04 8.8
Below the water surface 30 157.76 6.2
Below the water surface 40 131.08 5
Below the water surface 50 114.84 4.2
Below the water surface 60 100.92 3.8
Below the water surface 70 89.32 3.2
Below the water surface 80 ND 2.6

*measured PAR values + loss factor through waterproof plastic cover (~16%)

4000 K

Measuring point Measuring depth [cm] PAR [μmol/m2s] Illuminance [lx]
Above the water surface 0 865.36 30.7
Below the water surface 0 788.8 27.8
Below the water surface 10 336.4 14.8
Below the water surface 20 229.68 9.4
Below the water surface 30 167.04 7
Below the water surface 40 121.8 5.5
Below the water surface 50 103.24 4.9
Below the water surface 60 99.76 4.1
Below the water surface 70 87 3.6
Below the water surface 80 ND 3.2

*measured PAR values + loss factor through waterproof plastic cover (~16%)

6700 K

Measuring point Measuring depth [cm] PAR [μmol/m2s] Illuminance [lx]
Above the water surface 0 864.2 33.9
Below the water surface 0 827.08 28.6
Below the water surface 10 386.28 15
Below the water surface 20 266.8 9.5
Below the water surface 30 191.4 7.1
Below the water surface 40 149.64 5.7
Below the water surface 50 125.28 5.3
Below the water surface 60 104.4 4.6
Below the water surface 70 96.28 3.4
Below the water surface 80 ND 3.2

*measured PAR values + loss factor through waterproof plastic cover (~16%)

© 27.04.2020
Heiko Blessin
Heiko Blessin
Dipl.-Biologe

Tauchen, Fotografie, Aquaristik, Haie, Motorrad

Comments

A word about cookies before we continue

The JBL Homepage also uses several types of cookies to provide you with full functionality and many services: We require technical and functional cookies to ensure that everything works when you visit this website. We also use cookies for marketing purposes. This ensures that we recognise you when you visit our extensive site again, that we can measure the success of our campaigns and that the personalisation cookies allow us to address you individually and directly, adapted to your needs - even outside our website. You can determine at any time - even at a later date - which cookies you allow and which you do not allow (more on this under "Change settings").

The JBL website uses several types of cookies to provide you with full functionality and many services: Technical and functional cookies are absolutely necessary so that everything works when you visit this website. In addition, we use cookies for marketing purposes. You can determine at any time - even at a later date - which cookies you allow and which you do not (more on this under "Change settings").

Our data protection declaration tells you how we process personal data and what purposes we use the data processing for. tells you how we process personal data and what purposes we use the data processing for. Please confirm the use of all cookies by clicking "Accept" - and you're on your way.

Are you over 16 years old? Then confirm the use of all cookies with "Noticed" and you are ready to go.

Choose your cookie settings

Technical and functional cookies, so that everything works when you visit our website.
Marketing cookies, so that we recognize you on our pages and can measure the success of our campaigns.

PUSH messages from JBL

What are PUSH messages? As part of the W3C standard, web notifications define an API for end-user notifications that are sent to the user's desktop and/or mobile devices via the browser. Notifications appear on the end devices as they are familiar to the end user from apps installed on the device (e.g. emails). Notifications appear on the end user’s device, just like an app (e.g. for emails) installed on the device.

These notifications enable a website operator to contact its users whenever they have a browser open - it doesn’t matter whether the user is currently visiting the website or not.

To be able to send web push notifications, all you need is a website with a web push code installed. This allows brands without apps to take advantage of many of the benefits of push notifications (personalised real-time communications at just the right moment).

Web notifications are part of the W3C standard and define an API for end user notifications. A notification makes it possible to inform the user about an event, such as a new blog post, outside the context of a website.

JBL GmbH & Co. KG provides this service free of charge, and it is easy to activate or deactivate.